Optimum Collective Submanifold in Resonant Cases by the Self-consistent Collective-coordinate Method for Large-amplitude Collective Motion
نویسندگان
چکیده
With t h e p u r p o s e o f c l a r i f y i n g c h a r a c t e r i s t i c d i f f e r e n c e o f t h e op t imum c o l l e c t i v e s u b m a n i f o l d s i n n o n r e s o n a n t and r e s o n a n t c a s e s , we d e v e l o p a n improved method o f s o l v i n g t h e b a s i c e q u a t i o n s of t h e s e l f c o n s i s t e n t c o l l e c t i v e c o o r d i n a t e (SCC) method f o r l a r g e a m p l i t u d e c o l l e c t i v e motion. I t is shown t h a t , i n t h e r e s o n a n t c a s e s , t h e r e i n e v i t a b l y a r i s e e s s e n t i a l c o u p l i n g t e r m s which b r e a k t h e ' lmaximal-decoupl ing t f p r o p e r t y o f t h e c o l l e c t i v e m o t i o n , and we have t o e x t e n d t h e optimum c o l l e c t i v e s u b m a n i f o l d s o a s t o p r o p e r l y t r e a t t h e d e g r e e s o f f r e e d o m which b r i n g a b o u t t h e r e s o n a n c e s . 5 1. I n t r o d u c t i o n The s e l f c o n s i s t e n t c o l l e c t i v e c o o r d i n a t e method (SCC m e t h o d ) / l / h a s been proposed a s a m i c r o s c o p i c t h e o r y t o p r o p e r l y d e f i n e g l o b a l c o l l e c t i v e c o o r d i n a t e s w h i c h s p e c i f y a n ' loptimum" c o l l e c t i v e submani fo ld i n t h e huge d i m e n s i o n a l t i m e dependent Har t ree-Fock (TDHF) m a n i f o l d . The b a s i c p r i n c i p l e o f t h e SCC m e t h o d is t o d e f i n e t h e op t imum c o l l e c t i v e s u b m a n i f o l d ( s u r f a c e ) i n s u c h a way t h a t t h e e x p e c t a t i o n v a l u e o f t h e H a m i l t o n i a n < H > w i t h t h e TDHF wave f u n c t i o n is s t a t i o n a r y a t e a c h p o i n t o n t h e s u r f a c e w i t h r e s p e c t t o v a r i a t i o n s p e r p e n d i c u l a r t o t h e s u r f a c e . T h u s , t h e g l o b a l c o l l e c t i v e c o o r d i n a t e s a r e d e f i n e d a s c a n o n i c a l v a r i a b l e s t o s p e c i f y t h e op t imum s u r f a c e , a n d t h e c o r r e s p o n d i n g c o l l e c t i v e ,. H a m i l t o n i a n is s i m p l y g i v e n by t h e e x p e c t a t i o n v a l u e on t h e s u r f a c e . The b a s i c e q u a t i o n s o f t h e SCC m e t h o d a r e o f t h e s i m p l e f o r m , a n d s e l f c o n s i s t e n t s o l u t i o n s of t h e set of t h e b a s i c e q u a t i o n s h a s been e a s i l y o b t a i n e d i n t e r m s o f t h e power s e r i e s e x p a n s i o n o f t h e b a s i c e q u a t i o n s w i t h r e s p e c t t o t h e c o l l e c t i v e v a r i a b l e s / l / . I n t h i s e x p a n s i o n method , i t is n e c e s s a r y t o s e t u p a s p e c i f i c " b o u n d a r y c 6 n a i t i o n " c h a r a c t e r i z i n g t h e c o l l e c t i v e m o t i o n u n d e r c o n s i d e r a t i o n . S u p p o s i n g t h e l a r g e a m p l i t u d e c o l l e c t i v e v i b r a t i o n i n s o f t n u c l e i , f o r e x a m p l e , we may se t u p t h e boundary c o n d i t i o n i n s u c h a way t h a t t h e l a r g e a m p l i t u d e c o l l e c t i v e mot ion is c o n n e c t e d w i t h t h e l o w e s t e n e r g y RPA ( l l p h o n o n f l ) mode i n t h e " s m a l l a m p 1 i t u d e f f harmonic l i m i t . w i t h t h i s boundary c o n d i t i o n , i t h a s b e e n shown t h a t t h e s e t o f t h e b a s i c e q u a t i o n s c a n be u n i q u e l y s o l v e d , p r o v i d e d t h a t t h e f r e q u e n c y of t h e RPA phonon mode is i n a n o n r e s o n a n t c a s e . I n t h i s nonresonant c a s e , t h e f r e q u e n c y of t h e RPA phonon mode d o e s n o t s a t i s f y t h e r e s o n a n c e c o n d i t i o n W a n d w a (X-1 , 2 , v . ) b e i n g t h e f r e q u e n c i e s of t h e RPA phonon mode and t h e o t h e r a = o RPA normal modes, r e s p e c t i v e l y . I n t h e r e a l i s t i c l a r ge-ampl i tude c o l l e c t i v e m o t i o n o f n u c l e i , however, we may o f t e n e n c o u n t e r t h e r e s o n a n t cases s a t i s f y i n g E q . ( l . l ) . I n s u c h r e s o n a n t c a s e s , t h e Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987213 C2-80 JOURNAL DE PHYSIQUE power s e r i e s e x p a n s i o n m e t h o d w i t h r e s p e c t t o t h e c o l l e c t i v e v a r i a b l e s e n c o u n t e r s t h e well-known problem of s m a l l denomina tor i n t h e e x p a n s i o n s e r i e s , a n d we h a v e t o p r o p e r 1 y t a k e i n t o a c c o u n t t h e d e g r e e s of freedom which b r i n g a b o u t t h e r e s o n a n c e s i n t h e power s e r i e s e x p a n s i o n . Wi th t h e purpose of i n v e s t i g a t i n g b e h a v i o r o f t h e o p t i m u m c o l l e c t i v e s u b m a n i f o l d i n t h e r e s o n a n t c a s e s , i n t h i s r e p o r t w e p ropose a n improved method o f s o l v i n g t h e b a s i c e q u a t i o n s of t h e SCC method. 52. B a s i c E q u a t i o n s of t h e SCC Method Adopt ing t h e c o n v e n t i o n o f u s i n g h l , we s t a r t w i t h t h e b a s i c e q u a t i o n s o f t h e TDHF t h e o r y , where t h e t ime-dependent S l a t e r d e t e r m i n a n t I $ ( t ) > is g i v e n by t Here / $ > d e n o t e s t h e H a r t r e e F o c k g r o u n d s t a t e w i t h e n e r g y Eo, a n d a t a n d b i 0 r e p r e s e n t t h e p a r t i c l e and h o l e c r e a t i o n o p e r a t o r s w i t h r e s p e c t t o I$ >; 0 M (N) b e i n g a number o f s i n g l e p a r t i c l e ( h o l e ) s t a t e s under c o n s i d e r a t i o n . Through a v a r i a b l e t r a n s f o r m a t i o n f = f (C*,C), i t is a lways p o s s i b l e / 2 / to i n t r o d u c e a U u i set of c a n o n i c a l v a r i a b l e s {C ,C*. 1 , by which t h e TDHF e q u a t i o n c a n be e x p r e s s e d a s U 1 t h e c a n o n i c a l e q u a t i o n s of mot ion i n c l a s s i c a l mechanics ; it a ~ ~ a c * . i d * . = a ~ / a c . U 1 1 ' ,. U l , . U 1 ' The SCC m e t h o d i n t e n d s t o e x t r a c t an optimum c o l l e c t i v e s u r f a c e ( s u b m a n i f o l d ) o u t o f t h e TDHF p h a s e s p a c e ( m a n i f o l d ) c h a r a c t e r i z e d by (C . ,C* 1, i n s u c h a way U 1 u i t h a t t h e H a m i l t o n i a n H is s t a t i o n a r y at e a c h p o i n t on t h e s u r f a c e w i t h r e s p e c t t o t h e v a r i a t i o n s p e r p e n d i c u l a r t o t h e s u r f a c e . S u p p o s i n g t h e d imens ion o f t h e s u r f a c e t o be 2L w h i c h is much s m a l l e r t h a n t h e d imens ion 2MN o f t h e TDHF phase s p a c e , we may i n t r o d u c e L p a i r s o f g l o b a l c o l l e c t i v e v a r i a b l e s (nn,nE;a-1,2, . . . ,L) t o s p e c i f y t h e s u r f a c e . The c a n o n i c a l v a r i a b l e s {C ,C* ) on t h e S u r f a c e a r e t h e n r e g a r d e d a s u i u i f u n c t i o n s of t h e c o l l e c t i v e v a r i a b l e s {nn,n;]; CCui] = cUi ( n * , n ) , = c* ( n * , n ) . ( 2 . 5 ) u i For any f u n c t i o n K of t h e c a n o n i c a l v a r i a b l e s { C u i , C ; i ) , w e u s e a s y m b o l [K] t o d e n o t e t h e f u n c t i o n o n t h e s u r f a c e ; [ K ] = k ( n * , n ) . I n t h e ne ighborhood of t h e s u r f a c e , t h u s , t h e TDHF e q u a t i o n (2.1) is r e d u c e d t o ,. ,. -t [I] 8<$01 i~( ;1~0 , -~ ;0 , ) e ( 2 . 6 ) n where t h e l o c a l i n f i n i t e s i m a l g e n e ~ a t o r s 6: and in a r e d e f i n e d a s E q . ( 2 . 6 ) i s t h e f i r s t b a s i c e q u a t i o n o f t h e SCC m e t h o d a n d is d e n o t e d by [I] h e r e a f t e r . The canonical equations of motion f o r the c o l l e c t i v e variables n u , Q:], can be d e r i v e d from [ I I ] , under the condition t h a t the weak boson-like commutation r e l a t i o n s " t .. .. < @ , I ~ 0 ~ , 0 ~ 1 1 + ~ > 6,B p < @ ~ ~ l [ ~ , ~ o ~ l l @ ~ > = 0 (2.9) A ^t have t o be s a t i s f i e d . I t has been proved/l/ t h a t the generators ( 0 ,O,) which have t o s a t i s f y Eq. (2 .9 ) a r e general ly determined through the r e l a t i o n s ; 1 1111 .O J a 0 > = n + S * , and C.C. , (2.10) where S ( n X , n ) is an a r b i t r a r y r e a l funct ion of the variables (na,n:). We may thus express the condition (2.9) i n the following form; Equat ion ( 2 . 1 0 ) i s t h e second of t h e b a s i c equations of the SCC method, which is hereaf te r ca l led the general1 zed c a n o n i c a l v a r i a b l e c o n d i t i o n and is denoted by [ I I ] . ( I n t h e p rev ious expans ion method/ l / , we have f ixed the spec ia l canonical var iables {nfl,n;) from the ou tse t s o as t o s a t i s f y the s implest case with S ( n * , n) = -. 0 i n Eq. ( 2 . 1 0 ) . ) The generalized canonical-variables condition [ I I ] means t h a t we can g e n e r a l l y keep t h e d e g r e e s of freedom t o choose t h e c a n o n i c a l c o l l e c t i v e var iab les {n,,r\;) through the a r b i t r a r y r e a l functfon S ( Q * , ~ ) . With the use of the condition [ I I ] , t h e basic equation [ I ] can be decomposed/l/ i n t o a ) t h e c a n o n i c a l equations of c o l l e c t i v e motion (2.8) Bnd b) the equations Of c o l l e c t i v e submanifold which is denoted by [I] ' he reaf te r . 13. Self-Consistent Solut ions of the SCC Equations -Nonresonant CaseAn e s s e n t i a l idea of the present improved method of solving t h e basic equations of t h e SCC method i s t o choose the canonical c o l l e c t i v e var iab les [n,, Q:) s o as t o put t h e c o l l e c t i v e Hamiltonian i n t o the normal (diagonal) form by a d o p t i n g an a p p r o p r i a t e funct ion S(n* ,n) i n Eq.(2.10). (This representat ion is j u s t the c-number version of the "physical bosonu r e p r e s e n t a t ion / 3 / ,/Q/, i n which the optimum col lec t ive Hamiltonian has a diagonal form with respect t o the number Of p h y s i c a l bosons . ) According t o t h e Birkoff-Gustavson normal-form e x p a n s i o n method/5 / , i t is always p o s s i b l e t o choose such c a n o n i c a l c o l l e c t i v e variables (nu,nL), Provided t h a t the frequencies of t h e R P A normal modes a r e nonresonant . C2-82 JOURNAL DE PHY SlQUE The r e q u i r e m e n t ( 3 . 1 ) is c a l l e d [ I I I ] h e r e a f t e r . I t is e a s i l y s e e n t h a t t h e problem t o s o l v e t h e s e t o f b a s i c e q u a t i o n s [ I ] , [I11 a n d [ I I I ] s e l f c o n s i s t e n t l y can be r e d u c e d t o f i n d i n g t h e h e r m i t i a n o p e r a t o r [ F ] s a t i s f y i n g t h e s e t o f e q u a t i o n s . I n o r d e r t o s i m p l i f y t h e p r e s e n t a t i o n , h e r e a f t e r , we r e s t r i c t o u r s e l v e s t o t h e s i m p l e s t c a s e o f L=l w i t h a s i n g l e pair o f c o l l e c t i v e v a r i a b l e s { n , q * ) . S i n c e t h e o p e r a t o r [F] is a o n e b o d y o p e r a t o r , we c a n e x p r e s s it i n t h e form -t w h e r e [;A,;t. A=0,1 ,2 , + ,MN-l) is t h e comple te s e t of t h e RPA normal mode3, X = t . A l ,i($A(ui)a,bi Y A ( , i ) b . a 1, s a t i s f y i n g t h e RPA e q u a t i o n 1 P We t h e n expand t h e c o e f f i c i e n t g A ( q * , n ) a s a power s e r i e s o f ( n , n * ) ; w i t h t h e b o u n d a r y c o n d i t i o n g ( 1 ) = r76 A A , O . W i t h t h i s b o u n d a r y c o n d i t i o n , t h e q u a d r a t i c p a r t o f x ( n * , n ) i n E q . ( 3 . 1 ) is g i v e n by wO b e i n g t h e f r e q u e n c y of t h e RPA phonon mode. The b a s i c e q u a t i o n s [ I ] ' , [ I I ] ' and [ I I I ] i n t h e p r e s e n t c a s e a r e aT* aT 1 aic . ( i i ) + 0 , T = l 1 an an* m, l (2m! )<001 [ . . [ , i ~ ] . . . ] , i ~ 1 ( 0 ~ > a n ~ n * (2m) ,. I n s e r t i n g t h e e x p r e s s i o n ( 3 . 2 ) f o r i C ( n * , n ) i n t o t h e s e t of Eqs. ( 3 . 6 1 , ( 3 . 7 ) a n d (3.81, a n d e v a l u a t i n g t h e c o e f f i c i e n t s o f e a c h power o f ( n , n * ) i n t h e s e e q u a t i o n s s t e p by s t e p , we can u n i q u e l y d e t e r m i n e t h e h i g h e r t e r m s g A ( n ) i n E q . ( 3 . 4 ) a s w e l l a s hr i n E q . ( 3 . 8 ) , p r o v i d e d t h a t t h e f r e q u e n c i e s o f t h e RPA normal modes a r e nonr e s o n a n t . 94. B a s i c E q u a t i o n s i n Resonant C a s e When t h e r e e x i s t s a r e s o n a n c e c o n d i t i o n ( 1 . l ) , wl-nowO 2 0, w i t h a n i n t e g e r n 0 ( n 0 > 2 ) , t h e p o w e r s e r i e s e x p a n s i o n method i n 5 3 e n c o u n t e r s t h e w e l l known problem of t h e a p p e a r a n c e o f lTzero-denomina tor" , l / ( w -n w ) , i n t h e c o e f f i c i e n t s of t h e power1 0 0 series e x p a n s i o n . I n s u c h a r e s o n a n t c a s e , t h e r e f o r e , we have t o p r o p e r l y t a k e i n t o a c c o u n t a p a i r o f new v a r i a b l e s ( 0 , ,n;) , which i s c o n n e c t e d w i t h t h e RPA normal mode w i t h f r e q u e n c y w l i n t h e s m a l l a m p l i t u d e ( h a r m o n i c ) l i m i t , b y e x t e n d i n g t h e c o l l e c t i v e s u b m a n i f o l d t o { n , q * ; n ,n 1 7 ' . I n t h i s c a s e t h e b a s i c e q u a t i o n s [I] ' and [II] a r e ( i ) < @ o l [ i A , e i ' { i [ g ) ~ an* an + an an* ,. aX a aX a i G (-)+ (-)-}e ] I @ o > = 0 , A*O, l . an; a n l an l a n l A t 1 a ( i i ) < a O 1 ~ O 1 ~ O > = p * + i ~ ( q * , n ; n ; , n ~ ) and c .c . , a n t 1 = p; + and c.c.. 0 1 0 I n t h e r e s o n a n t c a s e , i t is i m p o s s i b l e t o demand t h e c o n d i t i o n [ I II] , which p u t s t h e c o l l e c t i v e H a m i l t o n i a n i n t o t h e comple te normal form s u c h a s Eq . (3 .1 ) . By c h o o s i n g a n a p p r o p r i a t e f u n c t i o n S ( n * , n ; n ; , q l ) , however, we can put t h e c o l l e c t i v e Hami l ton ian i n t h e f o l l o w i n g form; which is of t h e normal ( d i a g o n a l ) form maximally w i t h t h e e x c e p t i o n o f t h e " r e s o n a n t term" xres. The r e s o n a n t t e r m can never be e x p r e s s e d i n t h e normal form and r e s d i s p l a y s an e s s e n t i a l c o u p l i n g between t h e ( Q , q*)-mode and t h e ( n l , n;]-mode t h r o u g h t h e r e s o n a n c e w -nou0 2 0 . 1 With t h e boundary c o n d i t i o n i n t h e s m a l l a m p l i t u d e l i m i t , g A _ q ( n * , q ; q ; , q l ) + n , g A C l ( n * , n ; n y , n l ) + n1 a n d g l ( n * , q ; q ; , q l ) + 0 , t h e s e t o f t h e b a s i c e q u a t i o n s , ( 4 . 1 ) , ( 4 . 2 ) and ( 4 . 3 ) , can be s o i v e d i n t h e form o f p o w e r s e r i e s e x p a n s i o n s w i t h r e s p e c t t o n , n * , q l a n d q;, a n d we c a n d e t e r m i n e g p o w e r s e r i e s e x p a n s i o n form a s w e l l a s t h e c o e f f i c i e n t s h i n t h e c o l l e c t i v e H a m i l t o n i a n ( 4 . 3 ) . 55. I l l u s t r a t i v e Example o f S o l u t i o n s I n s t e a d o f w r i t i n g down t h e g e n e r a l f o r m s o f t h e s o l u t i o n s o f t h e b a s i c e q u a t i o n s , we i l l u s t r a t e t h e s o l u t i o n s of t h e b a s i c e q u a t i o n s by a d o p t i n g a s i m p l e model. The model H a m i l t o n i a n is g i v e n a s T h e r e a r e f o u r l e v e l s w i t h e n e r g i e s E < t z 1 < t z 2 < ~ ? a n d e a c h l e v e l h a s N f o l d 0 d e g e n e r a c y . The f e r m i o n p a i r o p e r a t o r s a r e d e f i n e d a s C2-84 JOURNAL DE PHYSIQUE The lowest energy s t a t e wi thout i n t e r a c t i o n is The t imedependen t s i n g l e S l a t e r determinant is given a s
منابع مشابه
04 v 1 1 O ct 1 99 7 Large Amplitude Collective Motion in Nuclei and Metallic Clusters
A model Hamiltonian describing a two-level system with a crossing plus a pairing force is investigated using technique of large-amplitude collective motion. The collective path, which is determined by the decoupling conditions, is found to be almost identical to the one in the Born-Oppenheimer approximation for the case of a strong pairing force. For the weak pairing case, the obtained path des...
متن کاملSelf-consistent theory of large amplitude collective motion: Applications to approximate quantization of non-separable systems and to nuclear physics
The goal of the present account is to review our efforts to obtain and apply a “collective” Hamiltonian for a few, approximately decoupled, adiabatic degrees of freedom, starting from a Hamiltonian system with more or many more degrees of freedom. The approach is based on an analysis of the classical limit of quantum-mechanical problems. Initially, we study the classical problem within the fram...
متن کاملTowards microscopic dynamics of dissipation in nuclear collective motion
For getting some microscopic understanding of dissipative dynamics in nuclear collective motion in a more dynamical way, a system with three degrees of freedom is examined within the time-dependent Hartree-Fock theory. Exploiting the self-consistent collective coordinate (SCC) method, the total system is optimally devided into the collective and intrinsic subsystems. The energy dissipation proc...
متن کاملAn Investigation of Collective Teacher Efficacy and Teacher Self-Efficacy Subscales in the EFL Context of Iran
The concept of teacher efficacy has received significant attention in educational contexts in the recent years and has been empirically probed at 2 levels: individual teacher efficacy and collective teacher efficacy. Having their origins in the social cognitive theory, teacher and collective efficacy perceptions are quite distinct constructs, each affecting educational decisions and student ach...
متن کاملThe kinetic energy and and the geometric structure in the B = 2 sector of
We study the construction of the collective-coordinate manifold in the baryon number two sector of the Skyrme model. To that end we use techniques of adiabatic large amplitude collective motion, which treat potential and kinetic energy on an equal footing. In this paper the starting point is the Ansatz proposed by Atiyah and Manton (Phys. Lett. 438B, 222 (1989)), which allows a study of the dyn...
متن کاملSelf-Consistent-Field Method and τ -Functional Method on Group Manifold in Soliton Theory: a Review and New Results⋆
The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of cu...
متن کامل